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The rate of heat removal by a gas current in a ventilated granular bed has been 
estimated and measured. 

I. Effective Characteristics in Heat-Transfer Processes 

During stationary or nonstationary heating of a granular bed without through flow, the 
temperature distribution in space and time is determined by the basic thermal characteristic 
of the bed as a whole, namely, the effective thermal conductivity %e or thermal diffusivity 
a = %e/Cpp; as the main resistance to heat flow is produced by the gas layers between the 
grains, X e is dependent in the main on the thermal conductivity %g of the gas together with 
the porosity ~, being largely independent of the thermal conductivity ks of the solid, which 
is usually larger by 2-3 orders of magnitude than kg. As a result, kg < %e << %s, and for 
mean porosities ~ = 0.4 the effective thermal conductivity of an immobile unventilated bed 
is higher than %g by about an order of magnitude. 

When %e is measured by the instantaneous point-source method, it is assumed that the 
tempe~rature distribution in space and time T(x, y, z, T) obeys the equation for nonstationary 
conduction: 
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If the case is one of spherical symmetry, the solution takes the form 

r ( r l  ~ ) =  Cpp (V~_~_~)  8 .exp - -  4---a~ ' ( 2 )  

where Q is the total amount of heat released by the instantaneous source. The temperature 
is measured at a given distance r from the source and gives a curve as in (2) with a maximum; 
the time when this is reached, 
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enables one to determine the thermal diffusivity. The maximum temperature rise at this 

instant is 
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and this decreases as the distance from the source increases in inverse proportion to r a, 
i.e., to the heated volume. 

In this discussion, the local temperatures of the particle and gas in the gaps between 
the grains are considered as identical; this may be taken as justified if the heat transfer 
between the grains is fairly rapid. Our measurements of heat waves in ventilated and un- 
ventilated granular beds [i] have shown that the increasing spread in the heat wave during 
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propagation through the bed is largely due to the effective thermal conductivity. The heat 

transfer between the gas flow and the grains is fairly rapid, and it has only a secondary 

effect on the width of the wave. It is therefore quite reasonable to assume on the whole 

that the local gas and solid temperatures are equal, Tg = T s = T. 

All the same, the temperature and heat-flux distributions in a ventilated granular bed 

are more complex than in an unventilated one. Firstly, the heat is transported by the gas 
flow itself, and we should introduce a convective term --Cg0~u(3T/3z) into (i), where u is 
the speed of the gas flow along the z axis. Secondly, forc~ convection (turbulence) will 
occur as u increases, and this will accentuate the heat transfer by the gas from particle 
to particle; i.e., the effective thermal conductivity of the gas in the gaps is X~ > Xg. 
As the effective thermal conductivity and thermal diffusivity are proportional to X~, then 
a also increases with u. 

Then the heat-balance equation for the bed takes the form 

where 

OT [ 02T O~T O2T ] cgT 
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is the effective rate of heat transport by the gas flow, which is another characteristic in 

addition to a that effectively represents the heat transport in a ventilated granular bed. 

For an instantaneous point source we get that the temperature distribution will be 
dependent on the two parameters a and v: 

T(x, y, z, ~ = Q 1 .exp [ - x2 -+-y2+(z -w)~]  
" p @ ~  (}#4n-~- )  3 / 4aw j ( 7 ) 

and to determine these parameters from the observed curve is more difficult than for the 
case v = 0. 

For unvarying a and v at a given point (x; y; z = const) the relationship of (7) is a 
curve with a peak; the time ~m to reach this is defined by ~T/3T m = 0, which leads to the 
quadratic equation 

r 2 3 v~%~ = 0 .  ( 8 )  
4aT m 2 4a 

Then T m for a given r 2 = x 2 + y2 + z 2, i.e., at an identical distance from the source in 
any direction, is not dependent explicitly on z (on the orientation of the receiver rela- 
tive to the source). For v = 0 we get automatically from (8) that T m = r:/6a, as from (4) 

for the case of an unventilated bed. The fall in r m as v increases is at first slow, but 
afterwards is inversely proportional to v, as Fig. i shows in the dimensionless coordinates 

6aTm/r2 and rv/6a: 

~r rv ~ 6 ~,, -- 1 v2r~ rv r 
a 6a - -  36a---- q-  , and for - -  ~ 6 z , ~  - -  a . u 

We rewrite (7) as 

- -  - -  = - -  (9) Cpp (l/c4~_d~_a~)~ .exp [ - -  4a'c,, 2a 4a ' 

to see that T m for r = constant is explicitly dependent on z and is no longer symmetrical 
with respect to the detector orientation. The largest value for this maximum risewill 
occur with the detector placed at z = +r, and the least with z = --r. In the plane of the 
source, z = 0, one should find an intermediate value. From (9) we get a relation between 
these quantities: 

fO f~ 

Tmwi~flow:Tm in plane :Tm ag~n= flow= : I : e (!0) 
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Fig. i. Time to reach max- 
imal temperature at a dis- 

tance r behind an instan- 
taneous source as a func- 
tion of flow speed: A = 

6aTm/r2; B = rv/6a. 

The Peclet paramete r 

Pe = __rv (ii) 
a 

appears in (i0) inthe exponent, and thus even comparatively 
small values Pe z i result in a considerable asymmetry in 
the peak temperatures, whereas the gas speed has little ef- 
fect on T m. 

The value of T m at a given point varies with the speed 
in accordance with (9) and (8); if we assume that a = con- 

stant although v varies, we can calculate the derivative 

dT m = OT_.._.._._~_~ dwm ~, OT-----m--~= O. dv.----m-~q - OT-----m--~- 
do o~ m do Ov do Ov 

This shows t h a t  a t  p o i n t s  i n t h e  sou rce  p l ane  and ups t ream 
have dTm/dv < O; i . e . ,  the  maximum t empera tu re  he r e  should  
i n c r e a s e s .  On the  o t h e r  hand, a p o i n t  d i r e c t l y  downstream 

O"Tmov = T~ { z2a 2vTm } " 4 a  

in a flow for z << 0, r always 
always fall as the flow speed 
from the source at z = +r al- 

ways has dTm/dv > 0, since Fig. i shows that T m S r/v; for very large values of Pe = rv/ 
a >> i we get at this point z = +r a comparatively slow and nonexponential rise in Tm with 
v in accordance with 

3 
Q I T 

However, it is doubtful whether such large Pe are attainable, since the force convection in 

the gaps between the grains will increase with the flow speed, and a will consequently in- 

crease. If a increases more rapidly than v, the maximum temperature rise at z = +r may be- 
gin to fall. 

In our previous studies on heat transfer from a gas flow passed through a packed tube 
[2] we examined a layer of sand, crushed rock, and steel balls of diameter d = 2-6 mm. The 
Reynolds number for the flow between the grains Re = ud/~ varied from I0 to 600; the effec- 
tive transverse thermal conductivity was deduced indirectly from the relation between the 
overall heat-transfer coefficient to the walls and the Reynolds number. We found compara- 
tively slow increase in the thermal conductivity of the layer in the working range, namely, 

as h e ~ uZ/a; for Re < i we may assume that h e should be even less dependent on u. To 
establish to what extent it is sufficient to use only the two effective characteristics a 
and v to describe heat transfer in a ventilated or fluidized bed, we made measurements on 

fine-grained systems at small values of the Reynolds number. 

2. Methods 

The experiments were done with beds of quartz sand of mean diameter d/~. 0.3 mm; for 
subsequent comparison with a fluidized bed, the sand was filled into a vertical column of 
diameter 80 mm and blown with air from the bottom upwards. The height of the layer was 80 
mm, and the packed density was Pp = 1600 kg/m 3, while the specific heat of the sand, and 
also that of the air, was c = i J/kg-deg. The Archimedes number for these particles in air 
was Ar = (gdS/~2)'(0s/Pg) = 2600. The critical flow speed u c at which the bed became fluid- 

ized can be estimated [3] from Re c = ucd/~ = Ar/1400 ~ 2, which gives u c = i0 cm/sec; there- 
fore, we measured the thermal characteristics of the ventilated but immobile bed at u of 

5-7 cm/sec, i.e., at Re z i. 

The point source Of heat must be small by comparison with the scale of the layer, but 
have dimensions several times the particle diameter, which allows one to consider it as a 
continuous medium in relation to the granular bed with air gaps between the grains. The 
heater was a wire loop (Nichrome) of thickness 0.5 mm and turn diameter 2.5 mm, the height 
of the turn being about 1.5 mm. This loop was mounted in a holder, which also held the 
thicker supply leads, and was inserted through a hole in the wall of the column to bring 
the turn to the axis (the origin) and a heavy current with a density of about i00 A/mm 2 was 

passed for about 0.5 sec. 
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Fig. 2. Block diagram: i) heater; 2) microtherm- 

istor; 3) column; 4) bridge; 5) heat-pulse 
source; 6) amplifier; 7) oscilloscope. 

If we assume the mean radius of the volume in which the heat is released is about 1.5 

mm, while the maximum temperature rise is I000 ~ above room temperature, we get from (4) 
that at i0 mm from the center of the heater the maximum rise will be lower by a factor 
(10/1.5) 3 and will not exceed 2-3 ~ . We measured the very small rises with an MT-54 micro- 
thermistor with a tip of thickness 0.5 mm, which was mounted in a special ebonite holder. 

This holder was inserted through a hole in the wall opposite the heater insertion. The 
tip could be placed at r = i0 mm from the heater in three positions: above the heater (z = 

+r), under the heater(z = --r), and in the same plane (z = 0). With no flow we also used a 
more remote position at r = 20 mm, at which the expected maximum rise should not exceed 

0.5 ~ . The heater and thermistor were set up in the empty column, which wasthen filled 
with sand. 

Figure 2 shows the block diagram. The line voltage is passed through a timer to an 
autotransformer, whose secondary is connected to a step-down transformer to produce a cur- 

rent up to 23.5 A (instantaneous reading of ammeter) for T = 0.5 sec. The resistance of 
the loop was 0.26 ~, so the amount of heat supplied to the source did not exceed 70 J, and 
then (4) indicates that T = 3.5 ~ at r = i0 mm. The variation in the current during the 
pulse and the heat loss through the leads reduced this in fact to about 1.78 ~ . 

The thermistor was connected in an unbalanced bridge, and the voltage arising in the 

diagonal was passed to a UIPP-2 amplifier and then to a K-107 loop oscillograph. The range 
in the temperature was small, so the beam deflection was virtually linear as a function of 

temperature. A certain deficiency of the design was the comparatively thick holder (diameter 
about 7 mm), which somewhat perturbed the conditions assumed in Sec. 1 (spherical symmetry 

around the heater). The second assumption about the layer, namely, unbounded dimensions, 
was reasonably justified with the diameter and height used. 

3. Results and Discussion 

Figure 3 shows results for various positions of the thermistor and various modes of 
operation; lines 4 and 5 represent the temperatures with u = 0 at r = i0 mm and r = 20 mm. 

At this r, the observed points for all three positions (i, 2, and 3) fit to the same curve, 
and the behavior is well described by a single effective characteristic, namely, a, which 
is given by (3) as 

r ~ (! c ~ )  ~ cm 2 m2 
a = - - =  - - 3 . 8 . 1 0  -3 - - = 3 . 8 . ] 0  - ~ -  

6~ m 6 . 4 4  sec sec sec 

Correspondingly, the effective thermal conductivity has the reasonable value % = acpp = 
0.61 W/m-deg; when r was doubled, T m increased by about a factor of four, while T m fell by 
about a factor of eight. This very small rise did not allow us to obtain reasonably accurate 
values from the second heavy line 5 in Fig. 3, since the thickness of the line on the record- 
ing was comparable with deviation from the baseline. 

The thin lines 1-3 in Fig. 3 show the temperatures for u = 5.8 cm/sec recorded with 
r = i0 mm at all three points (i above the loop, 2 below the loop, and 3 at the level of 
the loop). These curves differ considerably on account of the heat transfer along the z 
axis. We expect from (6) that the second effective heat characteristic, namely, the heat- 
transport rate along the flow, should be 
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Fig. 3. Heating curves (AT, ~ T, sec) for 
u = 5.8 cm/sec: i) along flow; 2) against flow; 
3) at heater level; no flow, r (mm) of: 4) i0; 
5) 20. 

o =  ~Pg u=5 .8em/see .  1.1.3__. =4:7.lb_3em/se e 
Cgpp 1.1600 

and Pe = rv/a = (4.7"10-3"1)/(3.8"10 -3 ) = 1.24 is of the order of one; as we have seen in 
See. I, the position of T m on all three curves at r = constant should be the same and de- 
pendent solely on a; on the other hand, the Tmi should be different: Tmx should be substan- 
tially raised, while Tm2 and Tm3 should be slightly reduced. Further, the ratios should 
satisfy (i0). 

Figure 3 shows that these conclusions are justified only to a certain extent; the 
largest deviations occur for point 3 at the level of the heat source, where Tm3 is slightly 
higher than for the stagnant Case. 

If we neglect these distortions and calculate the Peclet criterion for points i and 2, 
we get 

Pe r v  = l n .  T'nl = I n  2,3 -1 .2  
a Tm~ 0.6 

which is very close to the theoretical value. 

As the sand becomes fluidized at u of about 9-10 cm/sec, the deviation from the theo- 
retical scheme of Sec. i increases as u rises above 5.8 cm/sec; on the other hand, when the 
bed becomes fluidized, the solid begins to participate in the longitudinal heat transport, 
and this has a bulk specific heat i000 times larger than that of the gas. This results in 
a marked rise in Pe = rv/a, and we find a very sharp fall in T m at point i, with a corre- 
spondingly marked rise in Tm~ (detailed figures are not given here). Conversely, at point 2 
the rise Tm2 was virtually unobservable. 

The heat transport in a ventilated granular bed is characterized by the following two 
major parameters:the effective thermal diffusivity a and the effective speed v. The gas 
flow produces some rise in the effective thermal conductivity perpendicular to the flow 
even at small Pe. The heat transport aiong the flow on an appreciable scale (Pc = vL/a >> 
i) is produced virtually by the flow itself. The influence from the effective thermal dif- 
fusivity on the longitudinal transport need be incorporated only at a small distance 
from the source (Pe = i). The solid participates in the convective heat transfer when the 
bed becomes fluidized, and the circulation in the vessel has then to be considered. 

NOTATION 

x, y, z, T, coordinates; r, time; T, temperature; c, specific heat; 0, density; %, 
thermal conductivity; a, thermal diffusivity; u, flow velocity; v, rate of heat removal; 
Q, heat generated by instantaneous heat source; d, grain diameter; ~, kinematic viscosity; 
~, bed porosity; Pe, Peclet number; Re, Reynolds number; Ar, Archimedes number. Indices: 
g, gas; s, solid; b, bulk; c, critical; e, effective; m, maximum. 

LITERATURE CITED 

i. B.N. Vetrov and O. M. Todes, Zh.'Tekh. Fiz., 25, 1217, 1232' 1242 (1955). 
2. B.N. Vetrov and O. M. Todes, Zh. Tekh. Fiz., 26, 800 (1956). 
3. V.P. Goroshko, R. B. Rozenbaum, and O. M. Todes, Neft' Gaz, No. i, 125 (1958). 

976 


